MATH 2460 EXAM 4

NAME

- GRADE -------OUT OF 15 PTS

Answer the following questions correctly (NO decimal answer!) for a full credit.-Show ALL work for a full credit.

PART I-SERIES AND FUNCTIONS (4pts)

- 1. (2pts) Given the power series, $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}(x-2)^n}{n2^n}$, answer the following questions:
 - (a) what is the center of the series?
 - (b) use the ratio test to find the radius of the series.
 - (c) based on the value (if any) of the radius obtained in (b), determine a possible interval of convergence of the series.
 - (d) now, check for convergence at the endpoints of the interval obtained in (c) to establish a definitive interval of convergence for the original series.

2. (2pts) Find a power series for the function, $f(x) = \frac{2}{3x+2}$, centered at -1. (There is no need to determine its convergence!)

PART II-PARAMETRIC EQUATIONS (11pts)

- 3. (2pts) Consider the parametric equations: $x = \sin(t)$ and $y = 2\cos(t)$. Find:
 - (a) dy/dx and d^2y/dx^2
 - (b) the slope and concavity (if possible) when $t = \frac{\pi}{3}$. (If an answer does not exist, write DNE.)

- 4. (2pts) Find the area of the surface generated by revolving the parametric curve c(t) = (7t, 9t) with $0 \le t \le 7$ about:
 - (a) *x*-axis
 - (b) y-axis

5. (1pt) Find the polar coordinates of the point $(\frac{4}{\sqrt{3}}, 4)$ with r > 0 and $0 \le \theta < 2\pi$

6. (6pts) Find the polar coordinates of the points on the graph of $r = 1 - \cos(\theta)$ where the tangent line is horizontal, with $r \ge 0$ and $0 \le \theta < 2\pi$.